HOMEWORK 10

Due date: Monday of Week 15

Exercises: 1 (a), (b), (¢), 6, 10, 12, p.148-149;
Exercises: 4, 7, 10, 11, 12, 13. p.155-156.

Let K be a commutative ring with 1. An element a € K is called a unit if there exists an element
b € K such that ab = 1. Denote by K * the set of all units in K. For example, if K itself is a field,
then K* = {z € K : x # 0}. For the integer ring Z, we have Z* = {1,—1}. What is F[z]* for a
field F7

Consider Mat,, «,, (K) and the following 3 types “elementary matrices” in Mat,,x, (K) which are
defined as follows. A type I elementary matrix is obtained by multiplying an element ¢ € K* to a
row of I,,, which is denoted by F,(R; < cR;). Here as usual, I,, is the identity matrix. A type II
elementary matrix is obtained by adding cR; to R; of the identity matrix I,, for some ¢ € K, which
is denoted by E,(R; < R; + cR;). A type III elementary matrix is obtained by switching two rows
of I,,, which is denoted by E,,(R; <> R;). One can also define elementary row operatations similarly
and the only difference from what we learned in Chapter I (in that case K is a field) is: in the first
kind elementary row operation, we require that c is a unit in K rather than any nonzero elements
(we have seen that if F is a field, a unit in F is just a nonzero element in F. The elementary matrices
defined here is actually the same as we defined in Chapter I if we generalize “F*” to “units”.)

Similarly, we can define elementary column operations. We did not even talk about this when F
is a field. The reason for it is: it is unnecessary using column operations for the purpose we did so
far. But it is necessary to use elementary elementary column operations when K is not a field. For
a matrix j, we denote by C; its j-th column. We consider the following 3 types elementary column
operations. Type 1, e(C; < ¢C;), replace C; by cC; with ¢ € K*; e(C; < C; + ¢C};): replace C;
by C; + cCj; e(C; <+ C;): swap C; and C;. Then we can also define elementary matrices using
elementary column operations applying to I,: E,(C; < cC;) (c € K*); E,(C; < C; + ¢Cj); and
E(C; <+ ;). For example E,,(C; + C; + c¢Cj;) is the matrix obtained by adding ¢C; of I, to C;.

Problem 1. Show that the elementary matrices defined by elementary column operations can be
also defined using elementary row operations.

For example E, (C; + ¢C;) = E,(R; < cR;). It is also easy to check the rest.

Problem 2. Show that each elementary matriz in Mat, «,,(K) is invertible. Write explicitly each
type elementary matrices in Matax2(Z).

Problem 3. Given a matriz A € Mat,,«xn(K). Let e be an elementary row operation and let E
be the corresponding elementary matriz. Show that e(A) = EA. Similarly, if e is an elementary
column operation, and E is the corresponding elementary matriz. Show that e(A) = AE.

Just check this case by case. We proved a similar result for elementary row operations in Chapter
1.

If K is a field, we showed in Chapter 1 that every matrix can be reduced to Row-Reduced Echelon
matrix using elementary row operations. If K is not a field, usually a matrix cannot be reduced to
Row-Reduced Echelon matrix in the sense we defined in Chapter 1 using elementary row/column
operations. Try to consider what “simple form” you can get for a matrix Mat,,«,(K) if K = Z or
F[z] using just elementary row operation and elementary column operators. You can define what
“simple” means. The next problem will give you some examples.
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Problem 4. Consider the matrix

1 2 3
A= |:4 6 6:| € Matgxg(Z).

(1) Using elementary row and elementary column operations (defined above for K = Z, namely,
in type I, ¢ is only allowed in Z* = {1,—1}) to reduce the matriz to

B- B : 8] € Mataxs(Z).

(2) Find invertible matrices P € GL3(Z),Q € GL2(Z) such that B = QAP.

(3) Try to use both elementary row and elementary column operations to reduce C = ? ;1 €
Matox2(Z) to a simple matrix C' € Mataxo(Z). Here it is up to you to decide what kind

matrices are “simple”. The answer depends on your own interpretation. Is C € GLo(Z)?

In the above Problem 4, we only considered matrices with coefficients in Z. You can also try
similar questions for matrices with coefficients in F[x] for a field F. Try to make your own problems
and solve them.

Also think about the following question. If K = Z or F[z]|. Given A € GL,(K), is it possible to
reduce A to the identity matrix using elementary row and column operations? Note that, if this is
true, then it will imply that every matrix A € GL,,(K) is still a product of elementary matrices. The
answer is Yes if K = Z or F[z]. We will see how to do this in Section 7.4 if K = F[z]. When K = Z,
we will see how to do this in a future course (and see how it will be used to determine the structure
of finitely generated abelian groups.) Please try some examples using 2 x 2 matrices if K = Z. It is
indeed easy. If K is more general, the question is related to something called K-theory. (The letter
“K” in K-theory is not related to the letter “K” that we used to denote our ring). Hopefully you
will learn something related to K-theory in the future.

The above problems are no hard at all. They are indeed linear algebra (but over a ring rather
than a field).

Do the above problems after Monday’s class.

Problem 5. Let V = F? and W = F3. Compute dimp Alt(V3; F) and dimp Alt(W?; F).

You can do Problem 5 after Monday’s class.

Recall that S, denotes the symmetric group on n-elements. In other words, S, consists of
bijections {1,2,...,n} — {1,2,...,n}. Recall that a matrix P is called permutation matrix if each
matrix and each row of P has only one nonzero element and that nonzero element is 1. (We can
view P as an element of GL, (K) for any commutative ring K with identity because both 1 and 0
are defined in any such K. If it is confusing, you can view P as an element in GL,, (F') for a field F'.
If it is helpful, you might take F' to be any field you are familiar with). Denote by Perm,, the set of
all n X n permutation matrices. We define

ei:(0,0,...,0,1,0,...,0)t: 1 GFn

0

with 1 in the i-th position. For an element o € S,,, we consider the matrix P, defined by

P, = [60(1)7 €5(2))- - - 760(11)} .
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For example, if n = 3, and o € S3 is the element such that o(1) = 2,0(2) = 3,0(3) = 1, then

Py = [eq(1), €o(2): €0(3)] =

o~ O
o O
OO =

Problem 6. Consider the map 0 : S,, — Perm,, defined by 0(c) = P,. Show that
(1) 0(oT) = 0(c)0(7);
(2) 0 is a bijection;
(3) det(P,) =sgn(o).
Some of these claims were proved in class. For (2), the following fact is useful, Let X,Y be two
finite sets with the same cardinality, and let f : X — Y be an injective map. Then f must be
bijective.

Problem 7. Given z1,...,x, € F, consider the matrix
2 n—1
1z 2y ... = .
1 xy 23 ... b~
A($17$27...7.'L'n): . .
2 n—1
1 =z, =z T,

Compute det(A(x1,...,Ty)).
This is a slight generalization of Ex 2, page 155. If you don’t know how to do the above problem

for general n, try the case when n = 4. Do the above two problems after Friday’s class.

You don’t have to do the next problem. If you have time, try to think about it for some small n
(like n = 3,4). Otherwise, ignore it. Like the authors said on page 162, our focus is not on explicit
calculations of determinants of specific matrices.

Problem 8. Consider the following n x n matriz with coefficients in Z :

1 2 3 . n

13 23 33 S n3

A(n) = 15 25 35 .. nd
12n71 227171 327171 n2n71

Compute det(A(n)).



