
HOMEWORK 10

Due date: Monday of Week 15

Exercises: 1 (a), (b), (c), 6, 10, 12, p.148-149;
Exercises: 4, 7, 10, 11, 12, 13. p.155-156.

Let K be a commutative ring with 1. An element a ∈ K is called a unit if there exists an element
b ∈ K such that ab = 1. Denote by K× the set of all units in K. For example, if K itself is a field,
then K× = {x ∈ K : x 6= 0}. For the integer ring Z, we have Z× = {1,−1}. What is F [x]× for a
field F?

Consider Matn×n(K) and the following 3 types “elementary matrices” in Matn×n(K) which are
defined as follows. A type I elementary matrix is obtained by multiplying an element c ∈ K× to a
row of In, which is denoted by En(Ri ← cRi). Here as usual, In is the identity matrix. A type II
elementary matrix is obtained by adding cRj to Ri of the identity matrix In for some c ∈ K, which
is denoted by En(Ri ← Ri + cRj). A type III elementary matrix is obtained by switching two rows
of In, which is denoted by En(Ri ↔ Rj). One can also define elementary row operatations similarly
and the only difference from what we learned in Chapter I (in that case K is a field) is: in the first
kind elementary row operation, we require that c is a unit in K rather than any nonzero elements
(we have seen that if F is a field, a unit in F is just a nonzero element in F . The elementary matrices
defined here is actually the same as we defined in Chapter I if we generalize “F×” to “units”.)

Similarly, we can define elementary column operations. We did not even talk about this when F
is a field. The reason for it is: it is unnecessary using column operations for the purpose we did so
far. But it is necessary to use elementary elementary column operations when K is not a field. For
a matrix j, we denote by Cj its j-th column. We consider the following 3 types elementary column
operations. Type 1, e(Ci ← cCi), replace Ci by cCi with c ∈ K×; e(Ci ← Ci + cCj): replace Ci
by Ci + cCj ; e(Ci ↔ Cj): swap Ci and Cj . Then we can also define elementary matrices using
elementary column operations applying to In: En(Ci ← cCi) (c ∈ K×); En(Ci ← Ci + cCj); and
E(Ci ↔ Cj). For example En(Ci ← Ci + cCj) is the matrix obtained by adding cCj of In to Ci.

Problem 1. Show that the elementary matrices defined by elementary column operations can be
also defined using elementary row operations.

For example En(Ci ← cCi) = En(Ri ← cRi). It is also easy to check the rest.

Problem 2. Show that each elementary matrix in Matn×n(K) is invertible. Write explicitly each
type elementary matrices in Mat2×2(Z).

Problem 3. Given a matrix A ∈ Matm×n(K). Let e be an elementary row operation and let E
be the corresponding elementary matrix. Show that e(A) = EA. Similarly, if e is an elementary
column operation, and E is the corresponding elementary matrix. Show that e(A) = AE.

Just check this case by case. We proved a similar result for elementary row operations in Chapter
1.

If K is a field, we showed in Chapter 1 that every matrix can be reduced to Row-Reduced Echelon
matrix using elementary row operations. If K is not a field, usually a matrix cannot be reduced to
Row-Reduced Echelon matrix in the sense we defined in Chapter 1 using elementary row/column
operations. Try to consider what “simple form” you can get for a matrix Matm×n(K) if K = Z or
F [x] using just elementary row operation and elementary column operators. You can define what
“simple” means. The next problem will give you some examples.
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Problem 4. Consider the matrix

A =

[
1 2 3
4 6 6

]
∈ Mat2×3(Z).

(1) Using elementary row and elementary column operations (defined above for K = Z, namely,
in type I, c is only allowed in Z× = {1,−1}) to reduce the matrix to

B =

[
1 0 0
0 2 0

]
∈ Mat2×3(Z).

(2) Find invertible matrices P ∈ GL3(Z), Q ∈ GL2(Z) such that B = QAP .

(3) Try to use both elementary row and elementary column operations to reduce C =

(
2 −1
1 2

)
∈

Mat2×2(Z) to a simple matrix C ′ ∈ Mat2×2(Z). Here it is up to you to decide what kind
matrices are “simple”. The answer depends on your own interpretation. Is C ∈ GL2(Z)?

In the above Problem 4, we only considered matrices with coefficients in Z. You can also try
similar questions for matrices with coefficients in F [x] for a field F . Try to make your own problems
and solve them.

Also think about the following question. If K = Z or F [x]. Given A ∈ GLn(K), is it possible to
reduce A to the identity matrix using elementary row and column operations? Note that, if this is
true, then it will imply that every matrix A ∈ GLn(K) is still a product of elementary matrices. The
answer is Yes if K = Z or F [x]. We will see how to do this in Section 7.4 if K = F [x]. When K = Z,
we will see how to do this in a future course (and see how it will be used to determine the structure
of finitely generated abelian groups.) Please try some examples using 2× 2 matrices if K = Z. It is
indeed easy. If K is more general, the question is related to something called K-theory. (The letter
“K” in K-theory is not related to the letter “K” that we used to denote our ring). Hopefully you
will learn something related to K-theory in the future.

The above problems are no hard at all. They are indeed linear algebra (but over a ring rather
than a field).

Do the above problems after Monday’s class.

Problem 5. Let V = F 2 and W = F 3. Compute dimF Alt(V 3;F ) and dimF Alt(W 2;F ).

You can do Problem 5 after Monday’s class.
Recall that Sn denotes the symmetric group on n-elements. In other words, Sn consists of

bijections {1, 2, . . . , n} → {1, 2, . . . , n}. Recall that a matrix P is called permutation matrix if each
matrix and each row of P has only one nonzero element and that nonzero element is 1. (We can
view P as an element of GLn(K) for any commutative ring K with identity because both 1 and 0
are defined in any such K. If it is confusing, you can view P as an element in GLn(F ) for a field F .
If it is helpful, you might take F to be any field you are familiar with). Denote by Permn the set of
all n× n permutation matrices. We define

ei = (0, 0, . . . , 0, 1, 0, . . . , 0)t =



0
...
0
1
0
...
0


∈ Fn

with 1 in the i-th position. For an element σ ∈ Sn, we consider the matrix Pσ defined by

Pσ =
[
eσ(1), eσ(2), . . . , eσ(n)

]
.
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For example, if n = 3, and σ ∈ S3 is the element such that σ(1) = 2, σ(2) = 3, σ(3) = 1, then

Pσ =
[
eσ(1), eσ(2), eσ(3)

]
=

0 0 1
1 0 0
0 1 0

 .
Problem 6. Consider the map θ : Sn → Permn defined by θ(σ) = Pσ. Show that

(1) θ(στ) = θ(σ)θ(τ);
(2) θ is a bijection;
(3) det(Pσ) = sgn(σ).

Some of these claims were proved in class. For (2), the following fact is useful, Let X,Y be two
finite sets with the same cardinality, and let f : X → Y be an injective map. Then f must be
bijective.

Problem 7. Given x1, . . . , xn ∈ F , consider the matrix

A(x1, x2, . . . , xn) =


1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12
...

...
...

...
...

1 xn x2n . . . xn−1n

 .
Compute det(A(x1, . . . , xn)).

This is a slight generalization of Ex 2, page 155. If you don’t know how to do the above problem
for general n, try the case when n = 4. Do the above two problems after Friday’s class.

You don’t have to do the next problem. If you have time, try to think about it for some small n
(like n = 3, 4). Otherwise, ignore it. Like the authors said on page 162, our focus is not on explicit
calculations of determinants of specific matrices.

Problem 8. Consider the following n× n matrix with coefficients in Z :

A(n) =


1 2 3 . . . n
13 23 33 . . . n3

15 25 35 . . . n5

...
...

...
...

...
12n−1 22n−1 32n−1 . . . n2n−1

 .
Compute det(A(n)).


